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Introduction to State Estimation

Definition: estimate the system states (x) from measurements (y)

Why estimate x?
! x is required to model the system
! y is a set of economically or conveniently measurable variables

" Usually a subset of x

! x is corrupted with process noise (w) and y with sensor noise (v)

Challenge of State Estimation
! Determine a good state estimate in the face of noisy and incomplete

output measurements

Probability Theory
! Necessary to develop an optimal state estimator
! Used to model fluctuations in the data
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Probability Concepts: Normal Distribution

Definition (Normal Distribution)

The Normal or Gaussian distribution of a random variable x is
characterized by its mean m and variance σ2 and is given by

p(x) =
1√

2πσ2
exp

(
−1

2

(x −m)2

σ2

)

Shorthand notation x ∼ N(m, σ2)

Example of a normal distribution with
! m = 1
! σ2 = 1/2, 1 and 2
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Multivariate Normal Distribution

Let x ∼ N(m,P):

p(x) =
1

(2π)n/2 |P|1/2
exp

[
−1

2
(x −m)TP−1(x −m)

]

in which
! x ∈ Rn is a vector of random variables
! p(x) is the probability density function
! m ∈ Rn is the mean
! P ∈ Rn×n is the covariance matrix
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Multivariate Normal Example
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Special Features of Normal Distributions (Fact 1)

Definition (Statistical Independence)

Two random variables x and y are statistically independent if

p(x , y) = p(x)p(y)

where p(x , y) is the joint distribution of x and y

Joint densities of independent normals (Fact 1)
! The joint density of two independent normals x ∼ N(mx ,Px) and

y ∼ N(my ,Py ) is

p(x , y) = N(mx ,Px)N(my ,Py )

p

([
x
y

])
= N

([
mx

my

]
,

[
Px 0
0 Py

])

x

y

Py

Px

mx

my
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Special Features of Normal Distributions (Fact 2)

Linear transformation of a normal (Fact 2)

For x ∼ N(m,P) and y = Ax + b ⇒ y ∼ N(Am + b︸ ︷︷ ︸
my

,APAT
︸ ︷︷ ︸

Py

)

Example: For the distribution

P =

[
4 2
2 4

]
m =

[
0
0

]

! Consider two cases of linear transformations
1

A1 =

»
1 1
1 −2

–
b1 =

»
−10
12

–

2

A2 =
ˆ
1 1

˜
b2 =

ˆ
−10

˜
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Fact 2: Example Solution

The transformed
covariance matrix and
mean for each case are

1

Py = A1PAT
1 =

[
12 −6
−6 12

]

my = A1m + b1 =

[
−10
12

]

2

Py = A2PAT
2 =

[
12

]

my = A2m + b2 =
[
−10

]
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Conditional Density Function

Definition (Conditional Density)

Let x and y be jointly distributed with density p(x , y). Assume that a
specific realization of y has been observed. The conditional density
function is defined as

p(x |y) =
p(x , y)

p(y)

Example: Rolling of a single die
! Consider the following possible outcomes for x and y

x ={1, 2, 3, 4, 5, 6} and y ={even, odd}
Calculate the probability p(1|odd) of having 1 as an outcome given
that we know that the outcome is odd

Solution (Use the definition of conditional density)

p(1, odd) = 1/6 and p(odd) = 3/6⇒p(1|odd)= 1/6
3/6 = 1/3
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Special Features of Normal Distributions (Fact 3)

Conditional densities of normal joint densities are also normal (Fact 3)

[
x
y

]
∼ N

([
mx

my

]
,

[
Px Pxy

Pyx Py

])
⇒ p(x |y) ∼ N(m,P)

m = mx + PxyP−1
y (y −my )

P = Px − PxyP−1
y Pyx
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Why Normal Distributions?

Theorem (Central Limit Theorem (CLT))

Consider a sequence x1, x2, . . . , xn of independent and identically
distributed random variables with respective densities pi (x)(i = 1, . . . , n).
As n increases, the distribution of x = (x1 + x2 + · · · xn)/n tends to a
normal curve, regardless of the shape of the original densities pi (x).
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Example: Adding Ten Uniformly Distributed Random Variables

Consider ten independent random
variables and their sum

x = [x1, x2, . . . x10]
T ; x ∼ U(0, 1)

y = x1 + x2 + · · · x10

Using Fact 2 above and the CLT

y approximates N(5, 5/6)
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State Estimation of Linear Systems: Kalman Filter (KF)

Consider the linear, time invariant model with Gaussian noise

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)

w ∼ N(0,Q) v ∼ N(0,R) x(0) ∼ N(x(0),Q(0))

The parameters of the initial state distribution, x(0) and Q(0), are
usually not known and often assumed

Starting with the upcoming measurement y(0), we want to determine
the state estimate x̂(0)
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Step 1: Combining the Measurement y(0)

The measurement y(0) satisfies

[
x(0)
y(0)

]
=

[
I 0
C I

] [
x(0)
v(0)

]

Assuming v(0) is independent of x(0), then from Fact 1

p

([
x(0)
v(0)

])
= N

([
x(0)
0

]
,

[
Q(0) 0

0 R

])

Since the pair (x(0), y(0)) is a linear transformation of (x(0), v(0)),
then from Fact 2

p

([
x(0)
y(0)

])
= N

([
x(0)

Cx(0)

]
,

[
Q(0) Q(0)CT

CQ(0) CQ(0)CT + R

])
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Step 1: Combining the Measurement y(0) (cont’d)

Using the conditional density result (Fact 3)

p (x(0)|y(0)) = N (m,P)

in which

m = x(0) + L(0) (y(0)− Cx(0))

L(0) = Q(0)CT (CQ(0)CT + R)−1

P = Q(0)− Q(0)CT (CQ(0)CT + R)−1CQ(0)

The optimal state estimate is the value of x(0) that maximizes
p(x(0)|y(0))

! For a normal, that is the mean and we choose x̂(0) = m
! The change in variance after measurement (Q(0) to P(0) = P)

quantifies the information increase by obtaining y(0)
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Step 2: Forecasting the State Evolution

We forecast from 0 to 1 using the model: x(1) = Ax(0) + w(0)

x(1) =
[
A I

] [
x(0)
w(0)

]

Assuming w(0) is independent of x(0) and y(0), then from Fact 1

p

([
x(0)
w(0)

]∣∣∣∣ y(0)

)
= N

([
x̂(0)
0

]
,

[
P(0) 0

0 Q

])

Using again the linear transformation result (Fact 2)

p(x(1)|y(0)) = N(x̂−(1),P−(1))

in which

x̂−(1) = Ax̂(0)

P−(1) = AP(0)AT + Q
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Recursion yields the KF update equations...

Now we are ready to add measurement y(1)
! calculate p(x(1)|y(1)) and forecast forward one more step

We proceed adding measurements followed by forecasting
! until we calculate the entire state distribution

" this recursion yields the KF update equations
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Kalman Filter — Summary

For a measurement trajectory Y (k) = {y(0), y(1), . . . y(k)}
! we can compute the conditional density function exactly

p(x(k)|Y (k − 1)) = N(x̂−(k),P−(k)) (before y(k))

p(x(k)|Y (k)) = N(x̂(k),P(k)) (after y(k))

in which

x̂(k) = x̂−(k) + L(k)
(
y(k)− Cx̂−(k)

)

L(k) = P−(k)CT (CP−(k)CT + R)−1

P(k) = P−(k)− P−(k)CT (CP−(k)CT + R)−1CP−(k)

Then we forecast the state evolution

x̂−(k + 1) = Ax̂(k)

P−(k + 1) = AP(k)AT + Q
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Knowledge of Uncertainty

P(k) provides a measure of the goodness of the estimate. It can be argued
that knowledge of P(k) is just as important as knowing the estimate x̂(k)
itself.

An estimate is meaningless unless one knows how good it is.

—A.H. Jazwinski
Stochastic Processes and Filtering Theory (1970)
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Large R , ignore the measurement, trust the model forecast
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Medium R , blend the measurement and the forecast
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Small R , trust the measurement, override the forecast
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Large R , y measures x1 only
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Medium R , y measures x1 only
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Small R , y measures x1 only

-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10 12 14 16
x1

x2

x(0)

x(1)

y(1)

Rawlings and Lima (UW) Linear Systems AICES 26 / 36



Least Squares (LS) Estimation

One of the most important problems in the application of
mathematics to the natural sciences is to choose the best of
these many combinations, i.e., the combination that yields values
of the unknowns that are least subject to errors.

Theory of the Combination of Observations Least Subject to Errors.
C.F. Gauss, 1821.
G.W. Stewart Translation, 1995, p. 31.
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LS Formulation for Unconstrained Linear Systems

Recall the unconstrained linear state space model

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)

The state estimation problem is formulated as a deterministic LS
optimization problem

min
x(0),...,x(T )

Φ(X (T ))
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LS Formulation: Objective Function

A reasonably flexible choice for objective function is

Φ(X (T )) = ‖x(0)− x(0)‖2(Q(0))−1+
T−1∑

k=0

+ ‖x(k + 1)− Ax(k)‖2Q−1 +

T∑

k=0

‖y(k)− Cx(k)‖2R−1

Heuristic selection of Q and R
! Q ' R: trust the measurement, override the model forecast
! R ' Q: ignore the measurement, trust the model forecast
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Solution of LS Problem by Forward Dynamic Programming

Step 1: Adding the measurement at time k

P(k) = P−(k)− P−(k)CT (CP−(k)CT + R)−1CP−(k) (covariance)

L(k) = P−(k)CT (CP−(k)CT + R)−1 (gain)

x̂(k) = x̂−(k) + L(k)(y(k)− Cx̂−(k)) (estimate)

Step 2: Propagating the model to time k + 1

x̂−(k + 1) = Ax̂(k) (estimate)

P−(k + 1) = Q + AP(k)AT (covariance)

(x̂−(0),P−(0)) = (x(0),Q(0)) (initial condition)

Same result as KF!
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Probabilistic Estimation versus Least Squares

The recursive least squares approach was actually inspired by
probabilistic results that automatically produce an equation of
evolution for the estimate (the conditional mean). In fact, much
of the recent least squares work did nothing more than rederive
the probabilistic results (perhaps in an attempt to understand
them). As a result, much of the least squares work contributes
very little to estimation theory.
—A.H. Jazwinski
Stochastic Processes and Filtering Theory (1970)
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Probability and Estimation

Probabilistic justification of least squares estimation.

Either an arbitrary assumption on errors: Normal distribution. Gauss.

Or an asymptotic argument: central limit theorem. Justifies least
squares for infinitely large data sets regardless of error distribution.
Laplace.

The connection of probability theory with a special problem in the
combination of observations was made by Laplace in 1774 . . .

Laplace’s work described above was the beginning of a game of

intellectual leapfrog between Gauss and Laplace that spanned

several decades, and it is not easy to untangle their relative

contributions. The problem is complicated by the fact that the

two men are at extremes stylistically. Laplace is slapdash and

lacks rigor, even by the standards of the time, while Gauss is

reserved, often to the point of obscurity. Neither is easy to read.

– G.W. Stewart, 1995, p. 214
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Kalman Filter and Least Squares: Comparison

Kalman Filter (Probabilistic)
! Offers more insights on the comparison of different state estimators

" based on the variance of their estimate error

! Choice of Q and R is part of the model
! Superior for unconstrained linear systems

Least Squares
! Objective function, although reasonable, is ad hoc
! Choice of Q and R is arbitrary
! Advantageous for significantly more complex models
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Limitations of These Approaches

What about constraints?

! Concentrations, particle size distributions, pressures, temperatures are
positive.

! Using this extra information provides more accurate estimates.
! Projecting the unconstrained KF estimates to the feasible region is an

ad hoc solution that does not satisfy the model.

What about nonlinear models?
! Almost all physical models in chemical and biological applications are

nonlinear differential equations or nonlinear Markov processes.
! Linearizing the nonlinear model and using the standard update

formulas (extended Kalman filter) is the standard industrial approach.

Rawlings and Lima (UW) Linear Systems AICES 34 / 36



Conclusions

Here we have learned...

Concepts of Probability Theory
! Normal distributions and linear transformations
! Joint and conditional densities
! Independence and Central Limit Theorem

Two state estimation techniques for linear systems
! Kalman Filter and Least Squares

" Both provide the same result for unconstrained systems
" Do not apply to constrained or nonlinear systems
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