
State Estimation of Linear and Nonlinear Dynamic
Systems

Part IV: Nonlinear Systems: Moving Horizon Estimation (MHE) and
Particle Filtering (PF)

James B. Rawlings and Fernando V. Lima

Department of Chemical and Biological Engineering
University of Wisconsin–Madison

AICES Regional School
RWTH Aachen
March 17, 2008

Rawlings and Lima (UW) MHE and PF AICES 1 / 45

Outline

1 The Challenge of Nonlinear Estimation

2 Moving Horizon Estimation (MHE)

3 Particle Filtering (PF)

4 Combining PF and MHE

5 Conclusions

6 Further Reading

Rawlings and Lima (UW) MHE and PF AICES 2 / 45



The Challenge of Nonlinear Estimation

Linear Estimation

Estimation Possibilities:

1 one state is the optimal estimate

2 infinitely many states are optimal
estimates (unobservable)

Nonlinear Estimation

Estimation Possibilities:

1 one state is the optimal estimate

2 infinitely many states are optimal
estimates (unobservable)

3 finitely many states are locally
optimal estimates
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Full Information Estimation

Nonlinear model, Gaussian noise,

x(k + 1) = F (x , u) + G (x , u)w

y(k) = h(x) + v

The trajectory of states

X (T ) := {x(0), . . . x(T )}

Maximizing the conditional density function

max
X (T )

pX |Y (X (T )|Y (T ))
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Equivalent Optimization Problem

Using the model and taking logarithms

min
X (T )

V0(x(0)) +
T−1∑

j=0

Lw (w(j)) +
T∑

j=0

Lv (y(j)− h(x(j)))

subject to x(j + 1) = F (x , u) + w (G (x , u) = I )

V0(x) := − log(px(0)(x))

Lw (w) := − log(pw (w)) Lv (v) := − log(pv (v))
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What do we do when we have a new measurement?

New measurement
at time T+1

Measurement
Estimate

y

T

Resolve optimization problem with T + 1 stages.
=⇒ Size of optimization increases with time.
Employ moving horizon approximation.
=⇒ Bound size of optimization with approximate estimator.
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Adding new Observations to the Estimation Problem

It occasionally happens that after we have completed all parts of
an extended calculation on a sequence of observations, we learn
of a new observation that we would like to include. In many

cases we will not want to have to redo the entire elimination but
instead to find the modifications due to the new observation in
the most reliable values of the unknowns and in their weights.

C.F. Gauss, 1823
G.W. Stewart Translation, 1995, p. 191.
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Moving Horizon Estimation

Moving Estimation
Window

Discard old
measurement New measurement

at time T+1

Measurement
Estimate
MH Estimate

y

T+1

In the Moving Horizon Estimation(MHE) strategy

! The most recent N states are considered
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Arrival Cost and Moving Horizon Estimation

Most recent N states X (T − N : T ) := {x(T − N) . . . x(T )}

Optimization problem

min
X (T−N:T )

VT−N(x(T − N))︸ ︷︷ ︸
arrival cost

+
T−1∑

j=T−N

Lw (w(j))+
T∑

j=T−N

Lv (y(j)−h(x(j)))

subject to x(j + 1) = F (x , u) + w .
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What does moving horizon estimation have to offer?

linear model
Gaussian noise
stability




 =⇒ Kalman Filter

linear model
general noise
inequality constraints
stability





=⇒ MHE

nonlinear model
Gaussian noise

}
=⇒ Extended Kalman Filter

nonlinear model
general noise
inequality constraints
stability





=⇒ MHE

Price =⇒ online “solution” to
quadratic/nonlinear program
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Literature Summary

Data Reconciliation/Moving Horizon Estimation

Liebman et al. (1992), Kim et al. (1991), Bequette (1991), Ramamurthi et al. (1993),
Tjoa and Biegler (1991), Albuquerque and Biegler (1996), Marquardt et al. (M’hamdi
et al., 1996; Binder et al., 2002) . . .
Moving Horizon Observers
Jang et al. (1986), Zimmer (1994), Michalska and Mayne (1995), Moraal and Grizzle
(1995)

Constrained Moving Horizon Estimation
! Meadows et al. (1993): Linear constrained estimation
! Muske and Rawlings (1995): Linear and nonlinear MHE
! Robertson and Lee (Robertson et al., 1996; Robertson and Lee, 2002): Linear and

nonlinear MHE, constraints, truncated distributions
! Tyler and Morari (1996): Linear MHE, constraints
! Findeisen (1997): Linear MHE, constraints
! Rao, Rawlings, Mayne, Lee (Rao et al., 2003, 2001; Rao and Rawlings, 2002;

Michalska and Mayne, 1995): Linear and nonlinear MHE, constraints
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Moving Horizon Approximation

Moving Estimation
Window

Discard old
measurement New measurement

at time T+1

Measurement
Estimate
MH Estimate

y

T+1
What are the consequences of neglecting old data?

Sensitivity to noise, high gain estimator.
Divergence.
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Potential pitfalls of neglecting past data

y

Measurement
Estimate
MH Estimate

By neglecting or too weakly weighting the past data, the estimator may be
sensitive to outliers or noise.
=⇒ Account for past data using approximate statistic.
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Potential pitfalls of improperly approximating past data

Account for past data
by penalizing deviation
from past estimate

y

Measurement
Estimate
MH Estimate

By weighting the past data or the prior information too strongly, the
estimator may be unable to keep up with data. Estimator divergence may
result.
=⇒ We require some forgetting to improve the robustness.
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How are full information and moving horizon estimation related?
=⇒ Forward Dynamic Programming

ΦT = Γ(x0 − x̄) +
T−1∑

k=0

L(wk , vk)

= Γ(x0 − x̄) +
T−N−1∑

k=0

L(wk , vk)

︸ ︷︷ ︸
Cost associated with
arriving at xT−N

Arrival Cost
ΞT−N(xT−N)

+
T−1∑

T−N

L(wk , vk)

︸ ︷︷ ︸
Uniquely determined by
xT−N and {wk}T−1

k=T−N

Fixed Horizon
Estimation Problem
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Arrival Cost

x

T

Estimate

Measurement
Restricted Estimate

Ξ T
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Forward Dynamic Programming Structure

T

Fixed Horizon

Full Information

T−N

Arrival Cost
Ξ T−N
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Moving Horizon Estimation — Optimization Problem

min
{xk}

ΘT =
T−1∑

k=T−N

L(wk , vk)

+ ΓT−N(xT−N − x̂T−N|T−N−1)︸ ︷︷ ︸
prior information

arrival cost

Initial penalty ΓT−N summarizes past data by penalizing deviation
away from past estimate.

If the initial penalty is equal to the arrival cost, then the full
information and moving horizon estimation problems are equivalent.
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Comments

For unconstrained linear systems with quadratic objectives, we can
calculate the arrival cost with the Kalman filter covariance. Moving
horizon estimation reduces to Kalman filtering.

For constrained linear systems with quadratic objectives, we can
globally lower bound the arrival cost with the Kalman filter
covariance.

When the system is nonlinear, we cannot in general calculate a
globally lower bound to the arrival cost with the exception of the
trivial choice: ΓT = 0.

One solution: Generate lower bound online (Rao, 2000).
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One year from now I try to reconstruct my travel to Aachen

Flew from Madison to a larger airport.
Data: “I don’t remember very well, but it was a short flight...”

Flew from that larger airport to Frankfurt.
Data: “I remember this flight very well. It took forever; it was about
7 hours...”

6

overbound

actual

6 * 8

11/41/2
3

Frankfurt

underbound

Madison

MinneapolisChicago DetroitMilwaukeeSt. Louis

1

7
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Arrival Cost Approximation — Current Research in MHE

The statistically correct choice for the arrival cost is the conditional
density of x(T − N)|Y (T − N − 1)

VT−N(x) = − log px(T−N)|Y (x |Y (T − N − 1))

Arrival cost approximations (Rao et al., 2003)

uniform prior (and large N)

EKF covariance formula

MHE smoothing
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Particle filtering — sampled densities

ps(x) =
s∑

i=1

wiδ(x − xi ) xi samples (particles) wi weights

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4
x

p(x)
p(x)
ps(x)

Exact density p(x) and a sampled density ps(x) with five samples for
ξ ∼ N(0, 1)
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Convergence — cumulative distributions

0
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x
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Ps(x)

Corresponding exact P(x) and sampled Ps(x) cumulative distributions
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Importance sampling

In state estimation, p of interest is easy to evaluate but difficult to sample.
We choose an importance function, q, instead.
When we can sample p, the sampled density is

ps =

{
xi , wi =

1

s

}
psa(xi ) = p(xi )

When we cannot sample p, the importance sampled density ps(x) is

ps =

{
xi , wi =

1

s

p(xi )

q(xi )

}
pis(xi ) = q(xi )

Both ps(x) and ps(x) are unbiased and converge to p(x) as sample size
increases (Smith and Gelfand, 1992).
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Importance function that can be sampled q(x).
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Importance function q(x) and its histogram based on 5000 samples.
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Exact density p(x) and its histogram based on 5000 importance samples.
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Importance sampled particle filter (Arulampalam et al.,
2002)

p(x(k + 1)|Y (k + 1)) = {xi (k + 1),w i (k + 1)}

xi (k + 1) is a sample of q(x(k + 1)|xi (k), y(k + 1))

wi (k + 1) = wi (k)
p(y(k + 1)|xi (k + 1))p(xi (k + 1)|xi (k))

q(xi (k + 1)|xi (k), y(k + 1))

The importance sampled particle filter converges to the conditional density
with increasing sample size. It is biased for finite sample size.

Rawlings and Lima (UW) MHE and PF AICES 27 / 45

Research challenge — placing the particles

Optimal importance function (Doucet et al., 2000). Restricted to
linear measurement y = Cx + v .

Resampling

Curse of dimesionality
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Optimal importance function

0
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k = 0

k = 1

k = 2

k = 3
k = 4

k = 5

Particles’ locations versus time using the optimal importance function; 250
particles.
Ellipses show the 95% contour of the true conditional densities before and
after measurement.
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Resampling

w 1 w 1 + w 2 w 1 + w 2 + w 3

! "

x̃1 = x1 x̃2 = x3 x̃3 = x3

10
#

How to resample without bias

Partition [0, 1] with original sample weights, wi .

Arrows depict the outcome of drawing three uniformly distributed
random numbers.

Sample x2 is discarded and sample x3 is repeated twice in the
resample.

The new sample’s weights are w̃1 = w̃2 = w̃3 = 1/3.
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Resampling

Original sample Resample

state weight state weight

x1 w1 = 3
10 x̃1 = x1 w̃1 = 1

3

x2 w2 = 1
10 x̃2 = x3 w̃2 = 1

3

x3 w3 = 6
10 x̃3 = x3 w̃3 = 1

3

The properties of the resamples are summarized by

pre(x̃ i ) =

{
wj , x̃ i = xj

0, x̃ i $= xj

w̃ i = 1/s, all i
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Resampling
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Particles’ locations versus time using the optimal importance function with
resampling; 250 particles.
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The MHE and particle filtering hybrid approach

Hybrid implementation

Use the MHE optimization to locate/relocate the samples

Use the PF to obtain fast state estimates between MHE optimizations
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Application: Semi-Batch Reactor

Reaction: 2A→ B

k = 0.16

Measurement is CA + CB

x0 =
[
3 1

]T

V

A, B

Fi , CA0, CB0

dCA

dt
= −2kC 2

A +
Fi

V
CA0 ∆t = 0.1

dCB

dt
= kC 2

A +
Fi

V
CB0

Noise covariances Qw = diag (0.012, 0.012) and Rv = 0.012

Bad Prior: x̄0 =
[
0.1 4.5

]T
with a large P0

Unmodelled Disturbance: CA0 ,CB0 is pulsed at tk = 5

Rawlings and Lima (UW) MHE and PF AICES 34 / 45



Using only MHE

MHE implemented with N = 15(t = 1.5) and a smoothed prior

MHE recovers robustly from poor priors and unmodelled disturbances
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Using only particle filter

Particle filter implemented with the Optimal importance function:
p(xk |xk−1, yk), 50 samples, Resampling

The PF samples never recover from a poor x̄0. Not robust
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MHE/PF hybrid with a simple importance function

Importance function for PF: p(xk |xk−1), 50 samples

The PF samples recover from a poor x̄0 and the unmodelled
disturbance only after the MHE relocates the samples
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MHE/PF hybrid with an optimal importance function

The optimal importance function: p(xk |xk−1, yk), 50 samples

MHE relocates the samples after a poor x̄0, but samples recover from
the unmodelled disturbance without needing the MHE
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Conclusions

Optimal state estimation of the linear dynamic system is the gold
standard of state estimation.

MHE is a good option for linear, constrained systems.

The classic solution for nonlinear systems, the EKF, has been
superseded. The UKF, for example, is an easily implemented
alternative worth evaluating.

MHE and particle filtering are higher-quality solutions for nonlinear
models. MHE is robust to modeling errors but requires an online
optimization. PF is simple to program and fast to execute but may be
sensitive to model errors.
They require more user experience to set up properly and more
computational resources to execute.
The payoff can be substantial, however.

Hybrid MHE/PF methods can combine these complementary
strengths.
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Future challenges

Process systems are typically unobservable or ill-conditioned, i.e.
nearby measurements do not imply nearby states.
We must decide on the subset of states to reconstruct from the data
– an additional part to the modeling question.

Nonlinear systems produce multi-modal densities. We need better
solutions for handling these multi-modal densities in real time.
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