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Nonlinear Dynamic Systems

For the nonlinear model with Gaussian noise

x(k + 1) = F (x , u) + G (x , u)w

y(k) = h(x) + v

w ∼ N(0,Q) v ∼ N(0,R) x(0) ∼ N(x0,Q0)

Consider the linearization at every k

A(k) =
∂F (x , u)

∂x

∣∣∣∣
bx(k),u(k)

C (k) =
∂h(x)

∂x

∣∣∣∣
bx(k),u(k)

G (k) = G (x̂(k), u(k))
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Extended Kalman Filter (EKF) Recursion

Forecast

x̂−(k + 1) = F (x̂ , u)

P−(k + 1) = A(k)P(k)A
′
(k) + G (k)QG

′
(k)

x̂−(0) = x0 P−(0) = Q0

Correction

x̂(k) = x̂−(k) + L(k)(y(k)− h(x̂−(k)))

L(k) = P−(k)C
′
(k)(C (k)P−(k)C

′
(k) + R)−1

P(k) = P−(k)− L(k)C (k)P−(k)
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Extended Kalman Filter — Remarks

EKF has a similar recursion in structure to the KF with
! Mean propagation through the full nonlinear model
! Covariance propagation through the linearized model

Resulting error from linearization may cause filter divergence
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EKF on Batch Reactor Example

P

A
k1−⇀↽−

k−1

B + C

2B
k2−⇀↽−

k−2

C

Estimate the concentrations of A, B, and C
Model

d

dt




cA

cB

cC



 =




−1 0
1 −2
1 1




[
k1cA − k−1cBcC

k2c2
B − k−2cC

]

Measure the total pressure

y = RT (cA + cB + cC )

Poor initial guess

x0 =
[
0.5 0.05 0

]T
vs. x0 =

[
0 0 4

]T
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EKF Results

C

C

B

B

A
A

Time

C
on

ce
nt

ra
ti
on

302520151050

1.6

1.2

0.8

0.4

0

-0.4

-0.8

Time

P
re

ss
ur

e

302520151050

35

30

25

20

15

10

Component Predicted EKF Actual
Steady-State Steady-State

A −0.027 0.012
B −0.238 0.184
C 1.137 0.675
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Clipped EKF Results
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Clipping of States: cj < 0→ cj = 0, j = A,B,C
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Constrained MHE Results
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State Constraints: cj ≥ 0, j = A,B,C
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Extended Kalman Filter — Assessment

The extended Kalman filter is probably the most widely used
estimation algorithm for nonlinear systems.

However, more than 35 years of experience in the estimation
community has shown that it is difficult to implement, difficult to
tune, and only reliable for systems that are almost linear on the
time scale of the updates.

Many of these difficulties arise from its use of linearization.

Julier and Uhlmann (2004).
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Unscented Kalman Filter (UKF)

n4

n1

n2

n3

w

m3

m2m4

v
x̂z4

z1

z2

z3

m1
P Q R

Given x̂ and P, choose sample points, z i , and weights, w i , such that

x̂ =
∑

i

w iz i P =
∑

i

w i (z i − x̂)(z i − x̂)′

Similarly, given w ∼ N(0,Q) and v ∼ N(0,R), choose sample points
ni for w and mi for v .
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UKF Prediction Step

Nonlinear Transformation
(van der Merwe et al., 2000)

z i
k+1

G (z i
k , uk)ni

k

z i
k

F (z i
k , uk)

ni
k

Propagate sigma points with the nonlinear model

z i
k+1 = F (z i

k , uk) + G (z i
k , uk)n

i
k all i

From these compute the forecast

x̂−k+1 =
∑

i

w iz i
k+1 P−

k+1 =
∑

i

w i (z i
k+1 − x̂−k+1)(z

i
k+1 − x̂−k+1)

′
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UKF Measurement Update

G (z i
k , uk)ni

k

z i
k

F (z i
k , uk)

z i
k+1

ni
k

h(z i
k+1)

mi
k

ηi
k+1

Measurement forecast:

ηi
k+1 = h(z i

k+1) + mi
k , ŷ−k+1 =

∑

i

w iηi
k+1

Output error: Y := y − ŷ−
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UKF Recursion

First rewrite the Kalman filter update

x̂ = x̂− + L(y − ŷ−)

L = E((x − x̂−)Y ′)︸ ︷︷ ︸
P−C ′

E(Y Y ′)−1

︸ ︷︷ ︸
(CP−C ′+R)−1

P = P− − L E((x − x̂−)Y ′)′︸ ︷︷ ︸
CP−

Approximate the two expectations with the sigma point samples

E((x − x̂−)Y ′) ≈
∑

i

w i (z i − x̂−)(ηi − ŷ−)′

E(Y Y ′) ≈
∑

i

w i (ηi − ŷ−)(ηi − ŷ−)′
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UKF Assessment

Does not linearize at a single point. Samples the nonlinearity at
several places (2n).

Computationally efficient.

Does not require even the Jacobian ∂F (x , u)/∂x of the model.

Has been tested on simulation examples, including process control
examples (exothermic CSTR, pH). (Romanenko and Castro, 2004;
Romanenko et al., 2004).
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UKF Assessment (cont’d)

Attractive alternative if the EKF gives convergence problems or
proves difficult to tune.

Recently published work incorporates constraints in the UKF
formulation (Vachhani et al., 2006)

! Performance not yet compared to other nonlinear and constrained
approaches such as

" Moving Horizon Estimation (optimization based)
" Particle Filtering (sampling based)
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Conclusions

Here we have learned ...

State estimation approaches for unconstrained nonlinear systems
! Extended Kalman Filter

" Example showed EKF divergence
! Unscented Kalman Filter

" Attractive alternative if the EKF fails
" Incorporation of constraints is under development
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