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Observability Property

Consider the linear system (A,C ) with n measurements Y (n − 1)

x(k + 1) = Ax(k)

y(k) = Cx(k)

Y (n − 1) = {y(0), y(1), . . . , y(n − 1)}

in which A ∈ Rn×n and C ∈ Rp×n

Definition (Observability)

(A,C ) is observable if these n measurements uniquely determine the
system’s initial state x(0).

Observability is a property of the deterministic model equations
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Observability Matrix

For the n measurements, the system model gives





y(0)
y(1)

...
y(n − 1)




=





C
CA
...

CAn−1





︸ ︷︷ ︸
O

x(0)

in which O ∈ Rnp×n is the Observability Matrix

(A,C ) is observable if and only if rank(O) = n
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Observability and Canonical Forms

For the linear system



x





k+1

=



 A







x





k

yk =
[

C
]


x





k

Find a similarity transformation T :

[
z1

z2

]
=

[
T1

T2

] [
x

]
⇒ Ã = TAT−1, C̃ = CT−1
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Canonical Forms: Observable and Unobservable Modes

So the transformed system has the following canonical form

[
z1

z2

]

k+1

=

[
Ã11 0

Ã21 Ã22

]

︸ ︷︷ ︸
eA

[
z1

z2

]

k

yk =
[

C̃ 1 0
]

︸ ︷︷ ︸
eC

[
z1

z2

]

k

where (Ã11, C̃ 1) is observable

In this structure
! z1 are the observable modes
! z2 are the unobservable modes

" however, the system is still detectable if λ(eA22) ≤ 1
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Detectability Property

Definition (Detectability)

A linear system is detectable when all the unobservable modes are stable

This property is important for partially observable systems

An observable system is also detectable

The property of detectability is important for control because
one may successfully design a control system for an unobservable
but detectable system so as to estimate and control the unstable
modes.

Advanced Process Control.
W.H. Ray, 1981.
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Illustrative Example: CSTR Reactor (Ray, 1981)

Reaction: A→ B → C

Controlled variables: CA, CB

Manipulated variables: CAf , CBf

State variables: dimensionless
concentrations - x1(CA), x2(CB)

Input variables: dimensionless feeds -
u1(CAf ), u2(CBf )

A, B

A, B , C

CAf , CBf

CA, CB

A→ B → C

[
ẋ1

ẋ2

]
=

[
−A1 0
A2 −A3

]

︸ ︷︷ ︸
A

[
x1

x2

]
+

[
1 0
0 1

]

︸ ︷︷ ︸
B

[
u1

u2

]

y = Cx

in which A1,A2,A3 ≥ 0 are constants
Rawlings and Lima (UW) Observability and Stability AICES 8 / 25



Solution for 2 Cases

1 Only x1 is measured
! C =

[
1 0

]

O =

[
1 0
−A1 0

]
⇒ rank(O) = 1

! Unobservable system!
! But it is still detectable: λ(A) < 0 (continuous system)

2 Only x2 is measured
! C =

[
0 1

]

O =

[
0 1
A2 −A3

]
⇒ rank(O) = 2

! Completely observable system!
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Example Remarks

A k1−→ B k2−→ C r1 = k1CA r2 = k2CB

1 Physical Reasons
! CB depends on both CA and CB
! CA is independent of CB

2 Consequences
! By measuring x2(CB) and knowing u, x1(CA) can be determined
! By measuring x1(CA) and knowing u, x2(CB) can take any value
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Deterministic Stability of State Estimator

Definition (Asymptotic Stability of the State Estimator)

The estimator is asymptotically stable in sense of an observer if the
estimator is able to “recover” from the incorrect initial value of state as
data with no measurement noise are collected.

initial

estimate

System

Estimator

k

xk
For example:

assume an incorrect initial
estimate

the estimator converges
(asymptotically) to the correct
value

Litmus Test
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State estimation: probabilistic optimality versus stability

Kalman filtering was first publicly presented (to somewhat more
than polite applause) on April 1, 1959. But please note: Kalman
filtering is not a triumph of applied probability: the theory has
only a slight inheritance from probability theory while it has
become an important pillar of system theory.
R. Kalman, 1994

As Kalman has often stressed the major contribution of his work
is not perhaps the actual filter algorithm, elegant and useful as it
no doubt is, but the proof that under certain technical conditions
called “controllability” and “observability,” the optimum filter is
“stable” in the sense that the effects of initial errors and
round-off and other computational errors will die out
asymptotically.
T. Kailath, 1974
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State Estimation: Optimality does not Ensure Stability

For the linear system

x(k + 1) = Ax(k)

y(k) = Cx(k)

Consider the case when A = I ,C = 0

! Optimal estimate is x̂(k) = x(0) (for a chosen initial condition)
! Estimator does not converge to the true state x(0)

" unless we have luckily chosen x(0) = x(0)

! Unobservable (and undetectable) system
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Cost Convergence and Stability Lemmas

Lemma (Convergence of estimator cost)

Given noise-free measurements Y (T ), the optimal estimator cost
Φ0(Y (T )) converges as T increases, regardless of the system observability.

Lemma (Estimator stability - convergence to the true state)

For (A,C ) observable and Q,R > 0 (positive definite), the optimal linear
state estimator is asymptotically stable

x̂(T )→ x(T ) as T →∞
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Obtaining Q and R from Data

X 1

X 2

XB

XN−1

Xf , Ff

XD

y 2

y 1

R
eb

oi
le

r

Condenser

w

v 2

v 1

Model discretized with tk = k∆t:

xk+1 = f (xk , uk) + g(xk , uk)wk[
y1

y2

]

k

=

[
1 · · · 0
0 · · · 1

]
xk +

[
v1

v2

]

k

Measurements are only XD ,XB at the
discretization times

Noise wk affects all the states

Noise vk corrupts the measurements
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Motivation for Using Autocovariances

X 1

X 2

XB

XN−1

Xf , Ff

XD

y 2

y 1

R
eb

oi
le

r

Condenser

w

v 2

v 1

Idea of Autocovariances
The state noise wk gets propagated in
time

The measurement noise vk appears only
at the sampling times and is not
propagated in time

Taking autocovariances of data at
different time lags gives covariances of
wk and vk

Let wk , vk have zero means and covariances
Q and R
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Mathematical Formulation of the ALS

Linear State-Space Model:

xk+1 = Axk + Gwk wk ∼ N(0,Q)

yk = Cxk + vk vk ∼ N(0,R)

Model (A,C ,G ) known from the linearization, finite set of
measurements: {y0, . . . , yk} given.

Only unknowns are noises wk and vk .

yk = Cxk + vk

yk+1 = CAxk + CGwk + vk+1

yk+2 = CA2xk +CAGwk +CGwk+1 +vk+2

E [ykyT
k ] = R

E [yk+2yT
k+1] = CAGQGTCT
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The Autocovariance Least-Squares (ALS) Problem

Skipping a lot of algebra, we can write:

Autocovariance Least Squares

Φ = min
Q,R

∥∥∥∥AN

[
(Q)s
(R)s

]
− b̂

∥∥∥∥
2

1 A least-squares problem in a vector of unknowns, Q,R

2 Form AN from known system matrices

3 b̂ is a vector containing the estimated correlations from data

b̂ =
1

T

T∑

k=1




ykyT

k
...

yk+N−1yT
k





s
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What about this idea?

Our new proposal!

Choose a suboptimal state estimator gain L and apply state
estimation to {yk} to obtain preliminary {x̂k}.
Obtain estimates of wk and vk from

Gŵk = x̂k+1 − Ax̂k

v̂k = yk − Cx̂k

Obtain estimates of Q and R from sample variances!

Q̂ =
1

T

T∑

k=1

ŵk ŵk
T R̂ =

1

T

T∑

k=1

v̂k v̂k
T

Rawlings and Lima (UW) Observability and Stability AICES 19 / 25

The bad news . . .

Unfortunately an estimate is not the same as the true noise

GQ̂GT = AL(CSCT + R)LTAT (= GQGT

R̂ = CSCT + R (= R

in which S satisfies the Lyapunov equation

S = (A− ALC )S(A− ALC )T + GQGT + ALRLTAT
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Maybe they are close?

Example:

A =




0.04 0.99 0.15
0.31 0.16 0.48
0.02 0.18 0.74



 C =




1.30
0.50
0.05




T

G =




0.51 0.00
0.00 0.92
0.30 0.00



 Q = 0.1I R = 0.1
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Comparison of Results

True values:

Q =

[
0.10 0.00
0.00 0.10

]
, R = 0.10

Using ŵk , v̂k samples:

Q̂ =

[
0.07 0.04
0.04 0.02

]
, R̂ = 0.32

Using ALS:

Q̂als =

[
0.08 0.00
0.00 0.13

]
, R̂als = 0.08
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Still more bad news

If you were lucky and somehow guessed (or estimated) the optimal L for
processing the data. . .

Optimal Pre-filtering of the measurements

Still incorrect Q̂, R̂

GQ̂GT = AL(CP−CT + R)LTAT (= GQGT

R̂ = CP−CT + R (= R

in which P− satisfies the filtering Riccati equation

P− = GQGT + AP−AT − AP−CT (CP−CT + R)−1CP−AT
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Conclusions

Today we have learned . . .
! Concepts of observability and detectability of linear systems

" Illustrated through chemical reactor example
! Introduction to State Estimator Stability

" Stability versus optimality
" Cost convergence and estimator stability lemmas

! Obtaining Covariances from Data
" Separating effects of Q and R in measurement y
" Autocovariance Least-Squares (ALS) technique to estimate Q and R
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